Uniform blow-up rate for a porous medium equation with a weighted localized source

نویسندگان

  • Weili Zeng
  • Xiaobo Lu
  • Qilin Liu
چکیده

* Correspondence: [email protected] School of Automation, Southeast University, Nanjing 210096, China Full list of author information is available at the end of the article Abstract In this article, we investigate the Dirichlet problem for a porous medium equation with a more complicated source term. In some cases, we prove that the solutions have global blow-up and the rate of blow-up is uniform in all compact subsets of the domain. Moreover, in each case, the blow-up rate of |u(t)|∞ is precisely determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of Weight Functions to a Nonlocal Porous Medium Equation with Inner Absorption and Nonlocal Boundary Condition

and Applied Analysis 3 He studied the asymptotic behavior of solutions and found the influence of weight function on the existence of global and blow-up solutions. Wang et al. 10 studied porous medium equation with power form source term ut Δu u, x, t ∈ Ω × 0, ∞ , 1.8 subjected to nonlocal boundary condition 1.2 . By virtue of the method of upper-lower solutions, they obtained global existence,...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Regional, Single Point, and Global Blow-up for the Fourth-order Porous Medium Type Equation with Source

Blow-up behaviour for the fourth-order quasilinear porous medium equation with source, (0.1) ut = −(|u|u)xxxx + |u|u in R × R+, n > 0, p > 1, is studied. Countable and finite families of similarity blow-up patterns of the form uS(x, t) = (T − t)− 1 p−1 f(y), where y = x/(T − t) , β = p−(n+1) 4(p−1) , which blow-up as t → T− < ∞, are described. These solutions explain key features of regional (f...

متن کامل

Asymptotic analysis to blow-up points for the porous medium equation with a weighted non-local source

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012